Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
Biomedicines ; 10(9)2022 Sep 12.
Article in English | MEDLINE | ID: covidwho-2032842

ABSTRACT

An increasing body of evidence in the literature is reporting the feasibility of using medical ozone as a possible alternative and adjuvant treatment for COVID-19 patients, significantly reducing hospitalization time, pro-inflammatory indicators, and coagulation markers and improving blood oxygenation parameters. In addition to the well-described ability of medical ozone in counteracting oxidative stress through the upregulation of the main anti-oxidant and scavenging enzymes, oxygen-ozone (O2-O3) therapy has also proved effective in reducing chronic inflammation and the occurrence of immune thrombosis, two key players involved in COVID-19 exacerbation and severity. As chronic inflammation and oxidative stress are also reported to be among the main drivers of the long sequelae of SARS-CoV2 infection, a rising number of studies is investigating the potential of O2-O3 therapy to reduce and/or prevent the wide range of post-COVID (or PASC)-related disorders. This narrative review aims to describe the molecular mechanisms through which medical ozone acts, to summarize the clinical evidence on the use of O2-O3 therapy as an alternative and adjuvant COVID-19 treatment, and to discuss the emerging potential of this approach in the context of PASC symptoms, thus offering new insights into effective and safe nonantiviral therapies for the fighting of this devastating pandemic.

4.
Int J Environ Res Public Health ; 19(7)2022 04 02.
Article in English | MEDLINE | ID: covidwho-1776215

ABSTRACT

(1) Background: Italy accounts for more than 150,000 deaths due to the COVID-19 pandemic, leading the top rank in SARS-CoV-2-caused deceases in Europe. A survey on the different ways by which the COVID-19 pandemic emergency was managed in the foreign European countries compared to Italy is the purpose of this paper. (2) Methods: A literature search and various mathematical algorithms to approach a rank scoring scale were used to describe in detail the different approaches used by European countries to manage the COVID-19 pandemic emergency. (3) Results: The study showed that Italy stands at the bottom ranking for COVID-19 management due to its high mortality rate. Possible causes of the observed huge numbers of hospitalization and deaths were (a) the demographic composition of the European country; (b) its decentralized healthcare system organization; (c) the role of correct pharmacology in the early stages before hospitalization. Post-mortem examinations were of paramount importance to elucidate the etiopathogenesis of COVID-19 and to tailor a suitable and proper therapy in the early symptomatic stages of COVID-19, preventing hospitalization. (4) Conclusions: Factors such as the significant impact on elderly people, the public health organization prevalently state-owned and represented mainly by hospitals, and criticism of the home therapy approach toward SARS-CoV-2-infected people, may have concurred in increasing the number of COVID-19 deaths in Italy.


Subject(s)
COVID-19 Drug Treatment , COVID-19 , Aged , COVID-19/epidemiology , Europe/epidemiology , Humans , Italy/epidemiology , Pandemics , SARS-CoV-2
5.
Basic Clin Pharmacol Toxicol ; 130(2): 225-239, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1528358

ABSTRACT

The COVID-19 pandemic is a highly dramatic concern for mankind. In Italy, the pandemic exerted its major impact throughout the period of February to June 2020. To date, the awkward amount of more than 134,000 deaths has been reported. Yet, post-mortem autopsy was performed on a very modest number of patients who died from COVID-19 infection, leading to a first confirmation of an immune-thrombosis of the lungs as the major COVID-19 pathogenesis, likewise for SARS. Since then (June-August 2020), no targeted early therapy considering this pathogenetic issue was approached. The patients treated with early anti-inflammatory, anti-platelet, anticoagulant and antibiotic therapy confirmed that COVID-19 was an endothelial inflammation with immuno-thrombosis. Patients not treated or scarcely treated with the most proper and appropriate therapy and in the earliest, increased the hospitalization rate in the intensive care units and also mortality, due to immune-thrombosis from the pulmonary capillary district and alveoli. The disease causes widespread endothelial inflammation, which can induce damage to various organs and systems. Therapy must be targeted in this consideration, and in this review, we demonstrate how early anti-inflammatory therapy may treat endothelia inflammation and immune-thrombosis caused by COVID-19, by using drugs we are going to recommend in this paper.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , Home Care Services , Hospitalization , SARS-CoV-2/drug effects , Time-to-Treatment , Anti-Bacterial Agents/therapeutic use , Anticoagulants/therapeutic use , COVID-19/diagnosis , COVID-19/mortality , COVID-19/virology , Clinical Decision-Making , Host-Pathogen Interactions , Humans , Patient Selection , Platelet Aggregation Inhibitors/therapeutic use , Risk Assessment , Risk Factors , SARS-CoV-2/pathogenicity , Treatment Outcome
6.
Int Immunopharmacol ; 96: 107777, 2021 Jul.
Article in English | MEDLINE | ID: covidwho-1225264

ABSTRACT

An increasing amount of reports in the literature is showing that medical ozone (O3) is used, with encouraging results, in treating COVID-19 patients, optimizing pain and symptoms relief, respiratory parameters, inflammatory and coagulation markers and the overall health status, so reducing significantly how much time patients underwent hospitalization and intensive care. To date, aside from mechanisms taking into account the ability of O3 to activate a rapid oxidative stress response, by up-regulating antioxidant and scavenging enzymes, no sound hypothesis was addressed to attempt a synopsis of how O3 should act on COVID-19. The knowledge on how O3 works on inflammation and thrombosis mechanisms is of the utmost importance to make physicians endowed with new guns against SARS-CoV2 pandemic. This review tries to address this issue, so to expand the debate in the scientific community.


Subject(s)
COVID-19 Drug Treatment , Oxidants, Photochemical/pharmacology , Ozone/pharmacology , SARS-CoV-2/drug effects , Humans , Oxidative Stress/drug effects
10.
Int Immunopharmacol ; 88: 106879, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-919641

ABSTRACT

OBJECTIVE: This study evaluated the potential efficacy of a novel approach to treat COVID-19 patients, using an oxygen-ozone (O2-O3) mixture, via a process called Oxygen-Ozone- Immunoceutical Therapy. The methodology met the criteria of a novel, promising approach to treat successfully elderly COVID-19 patients, particularly when hospitalized in intensive care units (ICUs) Experimental design: We investigated the therapeutic effect of 4 cycles of O2-O3 in 50 hospitalized COVID-19 subjects suffering from acute respiratory disease syndrome (ARDS), aged more than 60 years, all males and undergoing non invasive mechanical ventilation in ICUs. RESULTS: Following O2-O3 treatment a significant improvement in inflammation and oxygenation indexes occurred rapidly and within the first 9 days after the treatment, despite the expected 14-20 days. A significant reduction of inflammatory and thromboembolic markers (CRP, IL-6, D-dimer) was observed. Furthermore, amelioration in the major respiratory indexes, such as respiratory and gas exchange markers (SatO2%, PaO2/FiO2 ratio), was reported. CONCLUSION: Our results show that O2-O3 treatment would be a promising therapy for COVID-19 patients. It leads patients to a fast recovery from ARDS via the improvement of major respiratory indexes and blood gas parameters, following a relatively short time of dispensed forced ventilation (about one to two weeks). This study may encourage the scientific community to further investigate and evaluate the proposed method for the treatment of COVID-19 patients.


Subject(s)
Coronavirus Infections/therapy , Immunotherapy/methods , Oxygen/therapeutic use , Ozone/therapeutic use , Pneumonia, Viral/therapy , Respiratory Distress Syndrome/therapy , Aged , Betacoronavirus , Blood Gas Analysis , COVID-19 , Coronavirus Infections/immunology , Humans , Immunotherapy/instrumentation , Infusions, Intravenous , Intensive Care Units , Oxygen/administration & dosage , Ozone/administration & dosage , Pandemics , Pneumonia, Viral/immunology , Respiration, Artificial , Respiratory Distress Syndrome/immunology , SARS-CoV-2 , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL